Replacing Heat Pump Compressor

- 22.05

Review GE Heat Pump water heater:
photo src: waterheatertimer.org

A scroll compressor (also called spiral compressor, scroll pump and scroll vacuum pump) is a device for compressing air or refrigerant. It is used in air conditioning equipment, as an automobile supercharger (where it is known as a scroll-type supercharger) and as a vacuum pump. Many residential central heat pump and air conditioning systems and a few automotive air conditioning systems employ a scroll compressor instead of the more traditional rotary, reciprocating, and wobble-plate compressors.

A scroll compressor operating in reverse is known as a scroll expander, and can be used to generate mechanical work from the expansion of a fluid, compressed air or gas.


replacing package heat pump compressor - YouTube
photo src: www.youtube.com


Maps, Directions, and Place Reviews



History

Léon Creux first patented a scroll compressor in 1905 in France and the US (Patent number 801182). Creux invented the compressor as a rotary steam engine concept, but the metal casting technology of the period was not sufficiently advanced to construct a working prototype, since a scroll compressor demands very tight tolerances to function effectively. The first practical scroll compressors did not appear on the market until after World War II, when higher-precision machine tools enabled their construction. They were not commercially produced for air conditioning until the early 1980s.


Replacing Heat Pump Compressor Video



Design

A scroll compressor uses two interleaving scrolls to pump, compress or pressurize fluids such as liquids and gases. The vane geometry may be involute, Archimedean spiral, or hybrid curves.

Often, one of the scrolls is fixed, while the other orbits eccentrically without rotating, thereby trapping and pumping or compressing pockets of fluid between the scrolls. Another method for producing the compression motion is co-rotating the scrolls, in synchronous motion, but with offset centers of rotation. The relative motion is the same as if one were orbiting.

Another variation is with flexible (layflat) tubing where the archimedean spiral acts as a peristaltic pump, which operates on much the same principle as a toothpaste tube. They have casings filled with lubricant to prevent abrasion of the exterior of the pump tube and to aid in the dissipation of heat, and use reinforced tubes, often called 'hoses'. This class of pump is often called a 'hose pumper'. Since there are no moving parts in contact with the fluid, peristaltic pumps are inexpensive to manufacture. Their lack of valves, seals and glands makes them comparatively inexpensive to maintain, and the hose or tube is a low-cost maintenance item compared to other pump types.


Compressor Replacement on Heat Pump - YouTube
photo src: www.youtube.com


Applications

  • Air conditioner compressor
  • Vacuum pump
  • Superchargers for automobile applications, e.g. Volkswagen's G-Lader

Air Conditioning Repair Cost: Compressor & Condenser Fan Motor
photo src: www.fastacservice.com


Engineering comparison to other pumps

These devices are known for operating more smoothly, quietly, and reliably than conventional compressors in some applications. Unlike pistons, the orbiting scroll's mass can be perfectly counterbalanced, with simple masses, to minimize vibration. (An orbiting scroll cannot be balanced if Oldham coupling is used.) The scroll's gas processes are more continuous. Additionally, a lack of dead space gives an increased volumetric efficiency.

Rotations and pulse flow

The compression process occurs over approximately 2 to 2½ rotations of the crankshaft, compared to one rotation for rotary compressors, and one-half rotation for reciprocating compressors. The scroll discharge and suction processes occur for a full rotation, compared to less than a half-rotation for the reciprocating suction process, and less than a quarter-rotation for the reciprocating discharge process. Reciprocating compressor have multiple cylinders (typically, anywhere from two to six), while scroll compressors only have one compression element. The presence of multiple cylinders in reciprocating compressors reduces suction and discharge pulsations. Therefore, it is difficult to state whether scroll compressors have lower pulsation levels than reciprocating compressors as has often been claimed by some suppliers of scroll compressors. The more steady flow yields lower gas pulsations, lower sound and lower vibration of attached piping, while having no influence on the compressor operating efficiency.

Valves

Scroll compressors never have a suction valve, but depending on the application may or may not have a discharge valve. The use of a dynamic discharge valve is more prominent in high pressure ratio applications, typical of refrigeration. Typically, an air-conditioning scroll does not have a dynamic discharge valve. The use of a dynamic discharge valve improves scroll compressor efficiency over a wide range of operating conditions, when the operating pressure ratio is well above the built-in pressure ratio of the compressors. If the compressor is designed to operate near a single operating point, then the scroll compressor can actually gain efficiency around this point if there is no dynamic discharge valve present (since there are additional discharge flow losses associated with the presence of the discharge valve as well as discharge ports tend to be smaller when the discharge is present).

Efficiency

The isentropic efficiency of scroll compressors is slightly higher than that of a typical reciprocating compressor when the compressor is designed to operate near one selected rating point. The scroll compressors are more efficient in this case because they do not have a dynamic discharge valve that introduces additional throttling losses. However, the efficiency of a scroll compressor that does not have a discharge valve begins to decrease as compared to the reciprocating compressor at higher pressure ratio operation. This is a result of under-compression losses that occur at high pressure ratio operation of the positive displacement compressors that do not have a dynamic discharge valve.

The scroll compression process is nearly 100% volumetrically efficient in pumping the trapped fluid. The suction process creates its own volume, separate from the compression and discharge processes further inside. By comparison, reciprocating compressors leave a small amount of compressed gas in the cylinder, because it is not practical for the piston to touch the head or valve plate. That remnant gas from the last cycle then occupies space intended for suction gas. The reduction in capacity (i.e. volumetric efficiency) depends on the suction and discharge pressures with greater reductions occurring at higher ratios of discharge to suction pressures.


Fujitsu 15RLS2 Heat Pump Installed - My Initial Thoughts | Quadomated
photo src: www.quadomated.com


Reliability

Scroll compressors have fewer moving parts than reciprocating compressors which, theoretically, should improve reliability. According to Emerson Climate Technologies, manufacturer of Copeland scroll compressors, scroll compressors have 70 percent fewer moving parts than conventional reciprocating compressors.

In 2006 a major manufacturer of food service equipment, Stoelting, chose to change the design of one of their soft serve ice cream machines from reciprocating to scroll compressor. They found through testing that the scroll compressor design delivered better reliability and energy efficiency in operation.

Size

Scroll compressors tend to be very compact and smooth running and so do not require spring suspension. This allows them to have very small shell enclosures which reduces overall cost but also results in smaller free volume. This is a weakness in terms of liquid handling. Their corresponding strength is in the lack of suction valves which moves the most probable point of failure to the drive system which may be made somewhat stronger. Thus the scroll mechanism is itself more tolerant of liquid ingestion but at the same time is more prone to experience it in operation. The small size and quiet operation of a scroll compressor allow for the unit to be built into high power density computers, like IBM mainframes. Scroll compressors also simplify the piping design, since they require no external connection for the primary coolant.


Are Air Source Heat Pumps A Threat To Geothermal Heat Pump Suppliers?
photo src: www.forbes.com


Partial loading

Until recently, a powered scroll compressor could only operate at full capacity. Modulation of the capacity was accomplished outside the scroll set. In order to achieve part-loads, engineers would bypass refrigerant from intermediate compression pocket back to suction, vary motor speed, or provide multiple compressors and stage them on and off in sequence. Each of these methods has drawbacks:

  • Bypass short-circuits the normal refrigeration cycle and allows some of the partially compressed gas to return to the compressor suction without doing any useful work. This practice reduces overall system efficiency.
  • A two-speed motor requires more electrical connections and switching, adding cost, and may have to stop to switch.
  • A variable speed motor requires an additional device to supply electrical power throughout the desired frequency range. Also variable frequency drive associated with variable speed compressor has its own electrical losses, and is a source of additional significant cost and often is an additional reliability concern.
  • Compressor cycling requires more compressors and can be costly. In addition, some compressors in the system may have to be very small in order to control process temperature accurately.

Recently, scroll compressors have been manufactured that provide part-load capacity within a single compressor. These compressors change capacity while running.

Reciprocating compressors often have better unloading capabilities than scroll compressors. Reciprocating compressors operate efficiently in unloaded mode when flow to some of the cylinders is completely cut off by internal solenoid valves. Two-stage reciprocating compressors are also well suited for vapor injection (or what may be called economized operation) when partially expanded flow is injected between the first and second compression stages for increased capacity and improved efficiency. While scroll compressors can also rely on vapor injection to vary the capacity, their vapor injection operation is not as efficient as for the case of reciprocating compressors. This inefficiency is caused by continuously changing volume of the scroll compressor compression pocket during the vapor injection process. As the volume is continuously being changed the pressure within the compression pocket is also continuously changing which adds inefficiency to the vapor injection process. In case of a two-stage reciprocating compressor the vapor injection takes place between the two stages, where there is no changing volume. Both scroll and reciprocating compressors can be unloaded from mid-stage compression, however reciprocating compressors are also more efficient for this mode of unloading than scroll compressors, because the unloaded port dimensions in case of scroll is limited by the internal port size, which would not be the case for a reciprocating compressor where unloading again occurs from between the two stages.

Emerson manufactures a scroll compressor that is capable of varying the refrigerant flow as per requirement. Instead of fixing the scrolls together permanently, the scrolls are allowed to move apart periodically. As the scrolls move apart, the motor continues to turn but the scrolls lose the ability to compress refrigerant, thus motor power is reduced when the scroll compressor is not pumping. By alternating the two different working states: the loaded state and the unloaded state. A solenoid contracts and expands the rotating scroll and/or the fixed scroll, using axial compliance. The controller modifies the load time, and the unload time, matching the capacity of the compressor to the load requested. This type of scroll compressors while offering variable capacity control, normally down to 20% of the full flow, can suffer from a significant loss of efficiency especially toward the lower range of the capacity control.

Source of the article : Wikipedia



EmoticonEmoticon

 

Start typing and press Enter to search